
MCgrid Version 1.0 User Guide

mcgrid@projects.hepforge.org

Contents

1 Introduction 1

2 Software setup 2
2.1 Installation and build dependancies . 2
2.2 Linking with a Rivet analysis. 2

3 Implementing MCgrid tools in an analysis 3
3.1 Required modifications . 3
3.2 Booking subprocess PDFs . 3
3.3 Initialising APPLgrids in your analysis . 4
3.4 Filling and finalising the grids . 6

4 Executing your MCgrid / Rivet analysis 7
4.1 Parallelisation and grid combination . 7

A Subprocess Identification Scripts 9

1 Introduction

MCgrid is a software package that provides access to the APPLgrid interpolation tool for
Monte Carlo event generator codes. This is done by providing additional tools to the Rivet
analysis system for the construction of MCgrid enhanced Rivet analyses. The interface is
based around a one-to-one correspondence between a Rivet histogram class and a wrapper
for an APPLgrid interpolation grid. The Rivet system provides all of the analysis tools
required to project a Monte Carlo weight upon an experimental data bin, and the MCgrid

package provides the correct conversion of the event weight to an APPLgrid fill call, fully
accounting for the statistical subtitles in the process and the correct treatment of Catani-
Seymour counter terms in the event weights. MCgrid has been tested and designed for use
with the SHERPA event generator, however as with Rivet the package is suitable for use
with any code which can produce events in the HepMC event record format.

1

2 Software setup

2.1 Installation and build dependancies

The MCgrid package is supplied as an external library which may be used when construct-
ing Rivet analyses. It has a few basic dependancies, namely,

• Rivet version 2.0.0 or later.

• APPLgrid version 1.4.28 or later.

• boost::Filesystem version 3 or later.

• Optionally pkg-config for path management.

In order to install the test code supplied with MCgrid you should additionally have the
LHAPDF package installed.

MCgrid may be configured and installed in the conventional way with the autotools build
system. In the mcgrid directory you should perform:

. / configure −−prefix=[installation−dir]
make && make install

Additionally there are two important configuration options to be noted.

• −−disable−sherpafill

This option disables the default fill behaviour of MCgrid which takes into account the PDF
structure of event weights originating from the SHERPA [1] event generator and enables the
generic fill mode. You should enable this if you wish to use a different event generator with
MCgrid and the PDF dependance of the supplied weights is via a simple multiplicative
factor as described in [2].

• −−disable−namedweights

This option disables the use of named weights in the HepMC[3] interface. This option should
only be used if you encounter difficulties in running MCgrid with HepMC records generated
by older versions of the standard.

2.2 Linking with a Rivet analysis.

To include MCgrid functionality in your analysis, you should supply the usual rivet−←↩
buildplugin script with additional flags providing the paths to the package. The installa-
tion procedure provides the system with a pkg−config .pc file to provide path information.
A typical command for building a Rivet plugin would therefore be:

2

rivet−buildplugin [RivetAnalysis . so] [RivetAnalsis . cc] \ ←↩
$ (pkg−config mcgrid −−cflags) $ (pkg−config mcgrid −−libs)

An set of example analyses and a typical Makefile are provided in the examples directory
of the MCgrid package.

3 Implementing MCgrid tools in an analysis

3.1 Required modifications

To use the MCgrid tools, there are three modifications that must be made to your Rivet

analyses to enable the package. Firstly the MCgrid headers should be included at the top
of the analysis code:

#include ”mcgrid/mcgrid . hh”

Secondly, in the analysis phase of the code, the MCgrid event handler must be called for
every event passed to Rivet . This is done by adding the following line to the start of the
analysis phase:

MCgrid : : PDFHandler : : HandleEvent (event) ;

Finally in the finalise phase, the event handler must be cleared and exported by adding
the following as the final line in the finalise phase:

MCgrid : : PDFHandler : : ClearHandler () ;

With these modifications you have a barebones MCgrid enabled Rivet analysis. An ex-
ample of this minimal modification, MCGRID_BASIC is given in the examples directory.

3.2 Booking subprocess PDFs

After the basic modifications, you need to specify a APPLgrid subprocess PDF combina-
tion. This details which QCD subprocesses contribute to the full process in question, and
how the individual parton-parton subchannels are categorised into said subprocesses. This
information is provided by APPLgrid lumi_pdf config files. For the details of how these
files may be obtained from SHERPA or constructed by hand, refer to Appendix A.

To initialise a subprocess config file in MCgrid you should call the following in the rivet
init() phase for each process in the analysis:

3

MCgrid : : bookPDF (configname , histoDir () , beam1Type , beam2Type) ;

Where configname is a std::string providing the filename of the subprocess config name.
This file should be installed to the APPLgrid share folder. histoDir() is a standard Rivet

function which provides the name of the analysis. beam1Type and beam2Type specify
whether the beam types used in the config file, either for proton or anti-proton beams
where the quark flavours should be switched when performing a fill. For an LHC analysis
an example call would be:

const string PDFname (” a t l a s i n c l u s i v e j e t s . c o n f i g ”) ;
MCgrid : : bookPDF (PDFname , histoDir () ,

MCgrid : : BEAM_PROTON , MCgrid : : BEAM_PROTON) ;

Or for a Tevatron analysis where the second beam is antiprotons in the event generation:

const string PDFname (” c d f z r a p i d i t y . c o n f i g ”) ;
MCgrid : : bookPDF (PDFname , histoDir () ,

MCgrid : : BEAM_PROTON , MCgrid : : BEAM_ANTIPROTON) ;

An important config file that is provided by default in APPLgrid is the basic.config file.
In this subprocess config all 121 partonic channels are active. If you do not have a specific
subprocess identification file for your analysis, it is always possible to use this subprocess
PDF. However the resulting grid will be significantly larger than a typical grid produced
with subprocess identification enabled.

A few examples of subprocess config files are provided in the examples/subproc folder.

3.3 Initialising APPLgrids in your analysis

With the subprocess PDFs initialised it is time to set up the interpolating grids themselves.
Firstly the Rivet analysis should be implemented and checked as in a standard analysis
using only the histogram classes. Once the user is satisfied with the analysis, they should
add to the analysis class their grid classes.

For every Rivet histogram for which the user wishes to construct a corresponding APPLgrid
, they should add an MCgrid::gridPtr instance to the analysis class’ private attributes. For
example:

4

p r i v a t e :
/// Rivet Histograms
Histo1DPtr _h_distribution ;
Histo1DPtr _h_xsection ;

// APPLgrids
MCgrid : : gridPtr _a_distribution ;
MCgrid : : gridPtr _a_xsection ;

The naming of the gridPtr objects is left to the user, however it’s recommended that they
explicitly reference the histogram they are to be based upon.

Now, in the init() phase where your histograms are initialised, the MCgrid::gridPtr in-
stances should also be initialised with the following function:

MCgrid : : gridPtr MCgrid : : bookGrid (
// Corresponding Rivet histogram
const Rivet : : Histo1DPtr hist ,
// Result o f Rivet h i s t o D i r () c a l l
const std : : string histoDir ,
// APPLgrid subproces s PDF
const std : : string pdfname ,
// Leading order power o f a lpha s f o r the proce s s
const i n t LOpower ,
// Minimum value o f parton x in the event sample
const double xmin ,
// Maximum value o f parton x in the event sample
const double xmax ,
// Minimum event s c a l e ˆ2
const double q2min ,
// Maximum event s c a l e ˆ2
const double q2max ,
// Grid a r c h i t e c t u r e
const gridArch arch

) ;

Where the struct gridArch specified the architecture of the APPLgrid interpolation. It
can be initialised with the following constructor:

5

gridArch (
const i n t nX , // Number o f po in t s in x−g r id
const i n t nQ2 , // Number o f po in t s in Qˆ2 gr id
const i n t xOrd , // Order o f i n t e r p o l a t i o n on x−g r id
const i n t Q2Ord // Order o f i n t e r p o l a t i o n on Qˆ2−g r id

) :

As an example, consider the construction of a grid for a Drell-Yan Z-rapidity analysis
where events are generated with a fixed scale of M2

z :

// Grid a r c h i t e c t u r e
MCgrid : : gridArch arch (50 , 1 , 5 , 0) ;

/// Book histograms and g r i d s
_h_xsection = bookHisto1D (1 , 1 , 1) ;
_a_xsection = MCgrid : : bookGrid (_h_xsection ,

histoDir () , PDFname ,
0 ,
1E−5, 1 ,
8315 .18 , 8315 .18 ,
arch) ;

3.4 Filling and finalising the grids

In the analyse phase of your Rivet analysis, both the histograms and APPLgrid classes
must be populated after the experimental cuts and analysis tools are applied as usual.

Once you have performed your event selection and are ready to fill a histogram, you simply
have to fill the corresponding gridPtr also.

_h_distribution−>fill (coord , weight) ; // Histogram f i l l
_a_distribution−>fill (coord , event) ; // g r id f i l l

Here coord specifies the value of the histogrammed quantity for that event, weight is the
usual event weight and event is the Rivet::Event object passed to the analyse method.

Finally the normalisation of the grids should be set, and the APPLgrid .root files ex-
ported for use. This is accomplished in the finalise phase of the analysis. For the
normalisation the treatment of the grids is once again analogous to that of the histograms.

6

For each histogram/grid pair to be normalised the following should be called:

// Histogram norma l i s a t i on
scale (_h_distribution , normalisation) ;
// Grid norma l i s a t i on
_a_distribution−>scale (normalisation) ;

And finally the grids should be written to file.

_a_distribution−>exportgrid () ;

The filename of the grid will be based automatically upon the id of the corresponding
histogram.

4 Executing your MCgrid / Rivet analysis

As is typical with the APPLgrid package, to fill it’s produced grids two runs of the analysis
must be performed. The first, or phasespace fill run, determines the relative statistics of
each partonic channel in the process such that their statistical samples may be combined
correctly, and also establishes the boundaries of the x, Q2 phase space for each of the
interpolation grids as explained in [4]. The second run actually populates the grids with
the Monte Carlo weights. It is therefore typically sufficient to perform a run with a smaller
but representative event sample for the phase space run, and only run the full event sample
for the full fill.

The modified Rivet analysis produced with MCgrid utilities can be uses as a completely
conventional Rivet analysis, running over HepMC event record files, or indeed streamed via
a FIFO pipe or straight from an event generator.

The first run of the analysis will produce an MCgrid results directory in the current working
directory, and export an event count file along with the optimised APPLgrid phase space
grid to mcgrid/<analysis name>/phasespace/. The second, fill run, looks for these files
and reads them in preparation for the fill. The final APPLgrid files are exported into the
directory mcgrid/<analysis name>/ at the end of the second run.

4.1 Parallelisation and grid combination

In the case of very large statistics Monte Carlo runs, it may be advantageous to parallelise
the calculation to provide a substantial speed boost in the generation of the APPLgrid

files. It should be noted however that the phase space information provided from the

7

first run must be used by all subsequent parallel runs to ensure the correct combination
of the final grids. Therefore the phase space run may not be parallelised. However, as
mentioned previously, a representative sample rather than the full event record may be
used to determine the phase space information. This data may then be provided to several
parallel fill runs. Combination of the produced grids is done by the standard tool provided
with the APPLgrid package, applgrid−combine.

References

[1] T. Gleisberg, S. .Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert and
J. Winter, JHEP 0902 (2009) 007 [arXiv:0811.4622 [hep-ph]].

[2] L. Del. Debbio, N. P. Hartland, S. Schumann, [arXiv:1312.4460 [hep-ph]].

[3] M. Dobbs and J. B. Hansen, Comput. Phys. Commun. 134 (2001) 41.

[4] T. Carli, D. Clements, A. Cooper-Sarkar, C. Gwenlan, G. P. Salam, F. Siegert,
P. Starovoitov and M. Sutton, Eur. Phys. J. C 66 (2010) 503 [arXiv:0911.2985 [hep-
ph]].

[5] T. Gleisberg and S. Hoeche, JHEP 0812 (2008) 039 [arXiv:0808.3674 [hep-ph]].

[6] F. Krauss, R. Kuhn and G. Soff, JHEP 0202 (2002) 044 [hep-ph/0109036].

8

A Subprocess Identification Scripts

The subprocess identification config files of APPLgrid list the partonic components of each
of the Nsub distinct subprocesses present in the calculation. For each subprocess there are

a set of N
(isub)
pair parton-parton pairs that contribute to it. The configuration file denotes

these as so:

[Flag f o r removal of CKM matrix elements = 0 or 1]
0 [pair1] [pair2] . . [pairN_0]
1 [pair1] [pair2] . . [pairN_1]
. .
[Nsub]

Where the pairs are denoted by integer pairs in the LHA basis, neglecting the top quark:

b̄ c̄ s̄ ū d̄ g d u s c b
-5 -4 -3 -2 -1 0 1 2 3 4 5

The APPLgrid package searches for these configuration files in it’s share path which can
be found by using:

applgrid−config −−share

In MCgrid the first parameter in the configuration should always be set to zero, as the
APPLgrid functionality of CKM matrix element variations is not available in the package.
However the loss of this feature will only impact calculations where the CKM elements
enter only in the vertex connecting the two incoming partons.

As an example configuration, consider a hypothetical process who’s only partonic sub-
processes consist of UŪ and gD channels where U denotes an up-type quark and D a
down-type. The configuration file for APPLgrid would then be:

0
0 2 −2 4 −4 # UUBar
1 0 1 0 3 0 5 # gD

An important point is that these configuration files refer to the numbering scheme for
proton distributions. In the case where the user wishes to use a calculation with an initial
state antiproton beam, the signs on the antiproton beam flavours should be flipped. For
example, for a pp̄ beam our previous configuration file would become:

9

0
0 2 2 4 4 # UUBar (ppbar)
1 0 −1 0 −3 0 −5 # gD (ppbar)

Such that the correct PDF treatment of the antiproton beam is taken into account. Exam-
ples of subprocess configurations for both pp and pp̄ beams can be found in the examples

directory.

Provided in the MCgrid package are a pair of simple python scripts for the automated
generation of APPLgrid lumi_pdf configuration files from the output of either of the two
matrix element generators present in SHERPA , COMIX[5] and AMEGIC++[6]. The user may
choose to either construct the appropriate configuration file by hand or make use of these
scripts.

The tools can be found in the directory mcgrid/scripts. The two scripts are
identifyAmegicSubprocs.py and identifyComixSubprocs.py.

The operation of the two scripts is identical. Taking the SHERPA run card which you
will use for the full event generation run, you should run with only a handful of events,
which is sufficient for the generation of the process information required to form the sub-
process configurations. You should then run the appropriate script for your chosen matrix
element generator in the produced Process directory.

identify [MEgen] Subprocs . py −−beamtype=[pp/ppbar/pbarp]

Where the argument specifies the beam types used in the event generation. This ensures
that the quark flavours are mapped correctly to the proton PDF basis. This script will
then produce a subprocs.config file to be used in your MCgrid analysis and packaged
with the produced APPLgrid file for release.

10

