MCgrid Version 2.0 User Guide

mcgrid@projects.hepforge.org

Contents

1 Introduction 1

2 Software setup 3
2.1 Installation and build dependancies 3
2.2 Linking with a Rivet analysis. 4

3 Implementing MCgrid tools in an analysis 4
3.1 Required modifications 4
3.2 Booking subprocess PDFs o 0 4
3.3 Initialising APPLgrids and fastNLO tables in your analysis 6
3.4 Filling and finalising the grids L. 9
3.5 Active flavours 10

4 Executing your MCgrid/Rivet analysis 10
4.1 Environment variables L Lo L 11
4.2 Parallelisation and grid combination 11

A Subprocess Identification Scripts 13

1 Introduction

MCgrid is a software package that provides access to the APPLgrid and fastNLO interpo-
lation tools for Monte Carlo event generator codes. This is done by providing additional
tools to the Rivet analysis system for the construction of MCgrid enhanced Rivet analyses.
The interface is based around a one-to-one correspondence between a Rivet histogram class
and a wrapper for an APPLgrid/fastNLO interpolation grid. The Rivet system provides
all of the analysis tools required to project a Monte Carlo weight upon an experimental
data bin, and the MCgrid package provides the correct conversion of the event weight to an
APPLgrid/fastNLO fill call, fully accounting for the statistical subtitles in the process and
the correct treatment of Catani-Seymour counter terms in the event weights. MCgrid has
been tested and designed for use with the SHERPA event generator, however as with Rivet

the package is suitable for use with any code which can produce events in the HepMC event
record format.

2 Software setup

2.1 Installation and build dependancies

The MCgrid package is supplied as an external library which may be used when constructing
Rivet analyses. It has a few basic dependancies, namely,

e Rivet version 2.2.0 or later.

e APPLgrid version 1.4.56 or later.

e fastNLO Toolkit version 2.3pre-2125 or later.
e Optionally pkg-config for path management.

Both APPLgrid and fastNLO are optional, but at least one of them must be available.

In order to install the MCgrid examples and test code you should additionally have the
LHAPDF and HOPPET [2] packages installed.

MCgrid may be configured and installed in the conventional way with the autotools build
system. In the mcgrid directory you should perform:

./configure —prefix=[installation—dir]
make && make install

Additionally is one important configuration option to be noted.
e ——disable—sherpafill

This option disables the default fill behaviour of MCgrid which takes into account the PDF
structure of event weights originating from the SHERPA [1] event generator and enables the
generic fill mode. You should enable this if you wish to use a different event generator with
MCgrid and the PDF dependance of the supplied weights is via a simple multiplicative
factor as described in [3].

If you want to use MCgrid in conjunction with SHERPA, you should at least use the following
options when configuring it:

./ configure —enable—rivet=[installation—dir of rivet] \
—enable—hepmc2=[installation—dir of hepmc2]

Example SHERPA event generation configuration files (“run cards”) used for grid creation
with MCgrid can be found on the MCgrid hepforge wegpage.

2.2 Linking with a Rivet analysis.

To include MCgrid functionality in your analysis, you should supply the usual
rivet—buildplugin script with additional flags providing the paths to the package. The
installation procedure provides the system with a pkg—config.pc file to provide path
information. A typical command for building a Rivet plugin would therefore be:

rivet—buildplugin [RivetAnalysis.so| [RivetAnalsis.cc| \
$ (pkg—config mcgrid —cflags) $(pkg—config mcgrid —1libs)

An set of example analyses and a typical Makefile are provided on the MCgrid hepforge
webpage.

3 Implementing MCgrid tools in an analysis

3.1 Required modifications

To use the MCgrid tools, there are three modifications that must be made to your Rivet
analyses to enable the package. Firstly the MCgrid headers should be included at the top
of the analysis code:

#include "mcgrid/mcegrid.hh”

Secondly, in the analysis phase of the code, the MCgrid event handler must be called for
every event passed to Rivet. This is done by adding the following line to the start of the
analysis phase:

MCgrid :: PDFHandler :: HandleEvent (event, histoDir());

Finally in the finalise phase, the event handler must be cleared and exported by adding
the following as the final line in the finalise phase:

MCgrid ::PDFHandler :: CheckOutAnalysis (histoDir());

With these modifications you have a barebones MCgrid enabled Rivet analysis. An example
of this minimal modification, MCGRID_BASIC is given in the examples package.

3.2 Booking subprocess PDFs

After the basic modifications, you need to specify a subprocess PDF combination. This
details which QCD subprocesses contribute to the full process in question, and how the

individual parton-parton subchannels are categorised into said subprocesses. This infor-
mation is provided by APPLgrid lumi_pdf config files or by fastNLO steering files. For the
details of how these files may be obtained from SHERPA or constructed by hand, refer to
Appendix A.

Create a subprocessConfig instance to specify a subprocess combination for each pro-
cess in the analysis:

MCgrid :: subprocessConfig subproc(configFileName,
beamiType, beam2Type);

Where configFileName is a std::string providing the filename of the subprocess con-
fig name. APPLgrid lumi_pdf config files should be installed to the APPLgrid share
folder. fastNLO steering files should be located in the working directory. beam1Type<—
and beam2Type specify whether the beam types used in the config file, either for proton
or anti-proton beams where the quark flavours should be switched when performing a fill.
For an LHC analysis an example call for use with APPLgrid would be:

const string PDFname(” atlas_inclusivejets.config”);

MCgrid :: subprocessConfig subproc(PDFname,
MCgrid :: BEAM_PROTON,
MCgrid :: BEAM_PROTON) ;

Or when using fastNLO for a Tevatron analysis where the second beam is antiprotons in
the event generation:

const string PDFname(” cdf zrapidity.str”);

MCgrid :: subprocessConfig subproc(PDFname,
MCgrid:: BEAM_PROTON,
MCgrid::BEAM_ANTIPROTUN);

An important config file that is provided by default in APPLgrid is the basic.config file.!
In this subprocess config all 121 partonic channels are active. If you do not have a specific
subprocess identification file for your analysis, it is always possible to use this subprocess
PDF. However the resulting grid will be significantly larger than a typical grid produced
with subprocess identification enabled.

YA corresponding fastNLO steering file can be generated from basic.config using the
createFastNLOSteering.py script located in the MCgrid tarball.

A few examples of subprocess config files are provided in the examples/subproc and in
the examples/fastnlo—steerings folders.

3.3 Initialising APPLgrids and fastNLO tables in your analysis

With the subprocess PDF's initialised it is time to set up the interpolating grids themselves.
Firstly the Rivet analysis should be implemented and checked as in a standard analysis
using only the histogram classes. Once the user is satisfied with the analysis, they should
add to the analysis class their grid classes.

For every Rivet histogram for which the user wishes to construct a corresponding APPLgrid
and/or fastNLO table, they should add an MCgrid::gridPtr instance to the analysis class’
private attributes. For example:

private:
/// Rivet Histograms
HistolDPtr _h_distribution;
HistolDPtr _h_xsection;

// Interpolation grids
MCgrid:: gridPtr _g_distribution;
MCgrid:: gridPtr _g_xsection;

The naming of the gridPtr objects is left to the user, however it’s recommended that they
explicitly reference the histogram they are to be based upon.

Now, in the init() phase where your histograms are initialised, the MCgrid::gridPtr in-
stances should also be initialised with the following function:

MCgrid:: gridPtr MCgrid::bookGrid(
// Corresponding Rivet histogram
const Rivet::HistolDPtr hist,
// Result of Rivet histoDir () call
const std::string histoDir,
// Either an APPLgrid or a fastNLO config object
T config

) ;

Where the struct config specifies the configuration of the interpolation grid. APPLgrid
and fastNLO need different input to initialise their interpolation grids, so there is a config
struct for both of them:

// Use this to book an APPLgrid
MCgrid::applGridConfig applgrid_config(
// LO of the process
const int lo,
// A subprocess config file name
const subprocessConfig subprocess_config,
// A grid architecture config object
const applGridArch applgrid_arch,
// The minimum x value of the grid
const double x_min,
// The maximum x value of the grid
const double x_max,
// The minimum scale of the grid
const double q2_min,
// The maximum scale of the grid
const double g2_max,

) ;

// Use this to book a fastNLO table
MCgrid:: fastnloConfig fastnlo_config(
// LO of the process
const int lo,
// A subprocess config file name
const subprocessConfig subprocess_config,
// A grid architecture config object
const fastnloGridArch fastnlo_arch,
// The center—of—mass energy of the events
const double com_energy

) ;

Where the struct subprocess_config can be created as described in sec. 3.2. The
applGridArch and fastnloGridArch structs specify the architecture of the grid interpo-
lation. Again, there is one constructor for each implementation:

// Use this to specify an APPLgrid architecture
MCgrid :: applGridArch applgrid_arch(

// Number of grid points

const int nX,

const int nQ2,

// Order of interpolation

const int x0rd,

const int Q20rd

) ;

// Use this to specify an APPLgrid architecture
MCgrid:: fastnloGridArch fastnlo_arch(
// Number of grid points
const int nX,
const int nQ,
// Interpolation kernels
std::string const xKermnel,
std::string const gKernel,
// Distance measures
std::string const xDistanceMeasure,
std::string const gqDistanceMeasure

) ;

For possible values for the kernels and distance measures of fastNLO tables, see the
mcgrid.hh header. Some examples for architectures are predefined in the MCgrid namespace:
lowPrecAPPLgridArch, medPrecAPPLgridArch, highPrecAPPLgridArch or
lowPrecFastNLOArch, medPrecFastNLOArch, highPrecFastNLOArch.

As an example, consider the construction of an APPLgrid for a Drell-Yan Z-rapidity anal-
ysis where events are generated with a fixed scale of M?2:

// Grid architecture and configuration
MCgrid:: applGridArch arch(50,1,5,0);
MCgrid:: applGridConfig config(0, subproc, arch,
1E-5, 1, 8315.18, 8315.18);

/// Book histogram and corresponding grid

_h_xsection = bookHisto1D(1l, 1, 1);

_g_xsection = MCgrid::bookGrid(_h_xsection, histoDir (),
config);

3.4 Filling and finalising the grids
In the analyse phase of your Rivet analysis, both the histograms and grid classes must

be populated after the experimental cuts and analysis tools are applied as usual.

Once you have performed your event selection and are ready to fill a histogram, you simply
have to fill the corresponding gridPtr also.

_h_distribution—>fill(coord, weight); // Histogram fill
_g_distribution—>fill(coord, event); // grid fill

Here coord specifies the value of the histogrammed quantity for that event, weight is the
usual event weight and event is the Rivet::Event object passed to the analyse method.

Finally the normalisation of the grids should be set, and the APPLgrid .root files or
fastNLO .tab files exported for use. This is accomplished in the finalise phase of the
analysis. For the normalisation the treatment of the grids is once again analogous to that of
the histograms?. For each histogram/grid pair to be scaled the following should be called:

// Histogram normalisation
scale(_h_distribution, normalisation);
// Grid normalisation
_g_distribution—>scale(normalisation);

And finally the grids should be written to file.

2Tt should be noted that in MCgrid, a function analogous to the Rivet normalise method is not pro-
vided. This is an intentional choice, as under PDF variation the resulting predictions cannot be guaranteed
to be normalised to one. The user should utilise the scale method as described.

_g_distribution—>exportgrid();

The filename of the grid will be based automatically upon the id of the corresponding
histogram.

3.5 Active flavours

Call setNumberOfActiveFlavors(n) in the init phase of your Rivet analysis to change
the number of active flavours used by MCgrid internally. This is important if you want to
fill NLO events generated with Catani-Seymour subtraction, but the active flavours in the
generation does not match the MCgrid default of 5 (i.e. only the top quark is excluded)?.
For example, if you set the bottom quark to be massive in SHERPA, add the following line
to the init phase of your Rivet analysis to exclude the bottom quark:

MCgrid :: setNumberOfActiveFlavors (4);

Note that MCgrid assumes that the active flavours are the first n elements of the following
list: up, down, strange, charm, bottom, top.

4 Executing your MCgrid/Rivet analysis

As is typical with the APPLgrid and fastNLO package, to fill their produced grids two runs
of the analysis must be performed. The first, or phasespace fill run, determines the relative
statistics of each partonic channel in the process such that their statistical samples may be
combined correctly, and also establishes the boundaries of the x, Q? phase space for each
of the interpolation grids as explained in [5] and [6]. The second run actually populates
the grids with the Monte Carlo weights. It is therefore typically sufficient to perform a run
with a smaller but representative event sample for the phase space run, and only run the
full event sample for the full fill.

The modified Rivet analysis produced with MCgrid utilities can be uses as a completely
conventional Rivet analysis, running over HepMC event record files, or indeed streamed via
a FIFO pipe or straight from an event generator.

The first run of the analysis will produce an MCgrid results directory in the current work-
ing directory, and export an event count file along with the optimised APPLgrid/fastNLO
phase space grid to mcgrid/<analysis name>>/phasespace/. The second, fill run, looks
for these files and reads them in preparation for the fill. The final APPLgrid/fastNLO files
are exported into the directory mcgrid/<analysis name>/ at the end of the second run.

3This is also the default of SHERPA.

10

Subsequent runs would fill more grids. A counter suffix in the name of the exported file is
automatically used to prevent overwriting of existing grids.

4.1 Environment variables

The behaviour of MCgrid can be customised using the following environment variables:

e MCGRID_DISABLED If this variable is defined and not set to “0”, “false” or an empty
string, then MCgrid is disabled, i.e. will do nothing. Use this to temporarily disable
MCgrid without switching or modifying the analysis.

e MCGRID_OUTPUT_PATH Use this variable to customise the path used by MCgrid for
exporting final grids. It can be relative or absolute. The default output path is
mcgrid/.

e MCGRID_PHASESPACE_PATH Use this variable to customise the path used by MCgrid
for reading and writing phasespace information and final grids. It can be relative or
absolute. The default phasespace path is MCGRID_OUTPUT_PATH.

4.2 Parallelisation and grid combination

In the case of very large statistics Monte Carlo runs, it may be advantageous to parallelise
the calculation to provide a substantial speed boost in the generation of the APPLgrid/
fastNLO files. It should be noted however that the phase space information provided from
the first run must be used by all subsequent parallel runs to ensure the correct combination
of the final grids. Therefore the phase space run may not be parallelised. However, as
mentioned previously, a representative sample rather than the full event record may be
used to determine the phase space information. This data may then be provided to several
parallel fill runs. Combination of the produced grids is done by the standard tools provided
with the APPLgrid/fastNLO packages, applgrid—combine and fnlo—merge.

References

[1] T. Gleisberg, S. .Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert and
J. Winter, JHEP 0902 (2009) 007 [arXiv:0811.4622 [hep-ph]].

[2] G. P. Salam and J. Rojo, Comput. Phys. Commun. 180 (2009) 120 [arXiv:0804.3755
[hep-ph).

[3] L. Del. Debbio, N. P. Hartland, S. Schumann, [arXiv:1312.4460 [hep-ph]].

[4] M. Dobbs and J. B. Hansen, Comput. Phys. Commun. 134 (2001) 41.

11

[5] T. Carli, D. Clements, A. Cooper-Sarkar, C. Gwenlan, G. P. Salam, F. Siegert,
P. Starovoitov and M. Sutton, Eur. Phys. J. C 66 (2010) 503 [arXiv:0911.2985 [hep-

ph].
[6] D. Britzger et al. [fastNLO Collaboration], arXiv:1208.3641 [hep-ph].
[7] T. Gleisberg and S. Hoeche, JHEP 0812 (2008) 039 [arXiv:0808.3674 [hep-ph]].

[8] F. Krauss, R. Kuhn and G. Soff, JHEP 0202 (2002) 044 [hep-ph/0109036].

12

A Subprocess Identification Scripts

The subprocess identification config files of APPLgrid list the partonic components of each
of the Ny, distinct subprocesses present in the calculation. For each subprocess there are
a set of Nzgf;;fb)

these as so:

parton-parton pairs that contribute to it. The configuration file denotes

[Flag for removal of CKM matrix elements = 0 or 1]
0 [pairl] [pair2] .. [pairN_O]

1 [pairl] [pair2] .. [pairN_1]

[Nsub |

Where the pairs are denoted by integer pairs in the LH A basis, neglecting the top quark:

b ¢ 5 @ d g d u s c b

5 4 -3 -2 -1 01 2 3 4 5

The APPLgrid package searches for these configuration files in it’s share path which can
be found by using:

applgrid—config ——share

In MCgrid the first parameter in the configuration should always be set to zero, as the
APPLgrid functionality of CKM matrix element variations is not available in the package.
However the loss of this feature will only impact calculations where the CKM elements
enter only in the vertex connecting the two incoming partons.

As an example configuration, consider a hypothetical process who’s only partonic sub-
processes consist of UU and gD channels where U denotes an up-type quark and D a
down-type. The configuration file for APPLgrid would then be:

An important point is that these configuration files refer to the numbering scheme for
proton distributions. In the case where the user wishes to use a calculation with an initial
state antiproton beam, the signs on the antiproton beam flavours should be flipped. For
example, for a pp beam our previous configuration file would become:

13

2 4 4 # UUBar (ppbar)

0
0 2
10-10-30-5# gD (ppbar)

Such that the correct PDF treatment of the antiproton beam is taken into account. Exam-
ples of subprocess configurations for both pp and pp beams can be found in the examples
package.

A simple python script is provided in the MCgrid package for the automated generation of
APPLgrid lumi_pdf configuration files from the output of either of the two matrix element
generators present in SHERPA, COMIX[7] and AMEGIC++[8]. The user may choose to either
construct the appropriate configuration file by hand or make use of this script.

The tool can be found at mcgrid/scripts/identifySubprocs.py.

The operation of the identification script is straightforward. Taking the SHERPA run card
which you will use for the full event generation run, you should run with only a hand-
ful of events, which is sufficient for the generation of the process information required to
form the subprocess configurations. You should then run the script with the produced
process database as an argument. The process database is typically found in the generated
Process directory.

identifySubprocs.py —beamtype=[pp/ppbar/pbarp| Process.db

Where the argument specifies the beam types used in the event generation. This ensures
that the quark flavours are mapped correctly to the proton PDF basis. This script will
then produce a subprocs.config file to be used in your MCgrid analysis.

For fastNLO you must provide a steering file in the working directory with the subprocess
identification. The format is similar to the way described above for APPLgrid. Example
steering files are provided in the examples package. A python script is provided in the
MCgrid package for the automated translation of a fastNLO steering file from an APPLgrid
configuration file, which in turn can be automatically generated from the processes written
out from SHERPA as described above.

The tool can be found at mcgrid/scripts/createFastNLOSteering.py and is used as
follows:

14

createFastNLOSteering.py —beamtype=[pp/ppbar/pbarp]| \
subproc.config

15

